

II B. Tech I Semester Regular Examinations, Feb/March - 2022 **MATHEMATICS - III**

(Com to all branches)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks 1 a) If $f(x, y, z) = 2x^2 + 4xy + 3z$ then find grad f. [4M] b) Find the divergence of the vector function $\overline{F} = (x^3 + y^3)i + 3xy^2 j + 3zy^2 k$. [5M] c) Calculate the work done in moving a particle in the force field [5M] $\overline{F} = 3x^2 \overline{i} + (2xz - y)\overline{j} + z \overline{k}$ along the straight line from (0, 0, 0) to (2, 1, 3). Or Verify Green's theorem in plane for $\int_C \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$, where 2 [14M] C is boundary of the region defined by $y = \sqrt{x}$ and $y = x^2$. a) If $L\{f(t)\} = F(s)$ then prove that $L\left\{\int_{0}^{t} f(u)du\right\} = \frac{F(s)}{s}$. 3 [7M] b) Find $L^{-1}\left\{\frac{2s^2-6s+5}{s^3-6s^2+11s-6}\right\}$. [7M] Or a) Use transform method to solve the differential equation 4 [7M] $\frac{d^{2}x}{dt^{2}} - 8\frac{dx}{dt} + 15x = 9te^{t} \text{ with } x = 5, \frac{dx}{dt} = 10 \text{ at } t = 0.$ b) [7M] Find the Laplace Transform of $\left\{ \left(\sqrt{t} + \frac{1}{\sqrt{t}} \right)^3 \right\}$. Find the Fourier series for the function $f(x) = \begin{cases} x & , 0 \le x \le \pi \\ 2\pi - x & , \pi \le x \le 2\pi \end{cases}$. 5 [7M] a) Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8}$. b) Obtain the Fourier expansion of $f(x) = x \sin x$ as a cosine series in $(0, \pi)$. [7M] Or a) Find the Fourier cosine integral and Fourier sine integral of 6 [7M] $f(x) = e^{-kx}, k > 0.$ b) [7M] C

7

ode No: R2021011
a) Derive the partial differential equation by eliminating the arbitrary constants [4M]
from the equation
$$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
.
b) Solve the partial differential
equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.
c) Solve the partial differential equation $z^2 = 1 + p^2 + q^2$.
Or
a) Form partial differential equation by eliminating the arbitrary functions from [4M]

- 8 a) Form partial differential equation by eliminating the arbitrary functions from [4M] $z = f(x) + e^{y}g(x)$
 - b) Find the general solution of the partial differential equation [5M] $\left(x^2 - y^2 - z^2\right)p + 2xyq = 2zx.$

c) Solve the partial differential equation
$$p^2 + q^2 = x^2 + y^2$$
. [5M]

9 a) Solve
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$$
. [7M]

b) Solve
$$\frac{\partial^2 z}{\partial x^2} + 4 \frac{\partial^2 z}{\partial x \partial y} - 5 \frac{\partial^2 z}{\partial y^2} = \sin(2x + 3y).$$
 [7M]

Or

- 10 a) Solve the by the method of separation of variables [7M] $4u_x + u_y = 3u$ and $u(0, y) = e^{-5y}$.
 - b) An insulated rod of length L has its ends A and B maintained at 0° C and [7M] 100°c respectively until steady state conditions prevail. If B is suddenly reduced to 0° c and maintained at 0° C, find the temperature at a distance x from A at time *t*.

2 of 2